(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → s(0)
f(s(0)) → s(0)
f(s(s(x))) → f(f(s(x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(s(x))) →+ f(f(s(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → s(0')
f(s(0')) → s(0')
f(s(s(x))) → f(f(s(x)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(0') → s(0')
f(s(0')) → s(0')
f(s(s(x))) → f(f(s(x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
0') →
s(
0')
f(
s(
0')) →
s(
0')
f(
s(
s(
x))) →
f(
f(
s(
x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':s2_0(
+(
1,
n4_0))) →
gen_0':s2_0(
1), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_0':s2_0(+(1, 0))) →RΩ(1)
s(0')
Induction Step:
f(gen_0':s2_0(+(1, +(n4_0, 1)))) →RΩ(1)
f(f(s(gen_0':s2_0(n4_0)))) →IH
f(gen_0':s2_0(1)) →RΩ(1)
s(0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
0') →
s(
0')
f(
s(
0')) →
s(
0')
f(
s(
s(
x))) →
f(
f(
s(
x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
f(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(1), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(1), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
0') →
s(
0')
f(
s(
0')) →
s(
0')
f(
s(
s(
x))) →
f(
f(
s(
x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
f(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(1), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(1), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)